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Previous work suggests geometric properties of a representation space reflects its quality:.
Orthogonality between phone and speaker subspaces supports simple disentanglement (Liuetal, 2023).

Isotropy in a representation space implies all dimensions are utilized uniformly,
which proves h@lpflll in some tasks (e.g. modeling semantic similarity), but harmful in others (e.g. clustering).

In this work, we propose a quantitative measure, Cumulative Residual Variance, to evaluate:

Questions [ To what extent do different SSL models exhibit these two geometric properties?
* How do these properties relate to performance on phone and speaker classification?
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The relationship between orthogonality or isotropy
and speaker classification accuracy was less clear.
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Across the models, layer-wise trend for speaker information shows far greater variation than phonetic information.

Cumulative residual Variance

Given X (speaker centroids), Y (phone centroids): I Ortho residual var. . Self residual var,
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The area under the curve gives the residual phonetic variance w.r.t. speaker, or ph\spk. AUC -> spk\spk.
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