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Encoding structures of speaker information and phonetic context 



Current language technology systems are impressive
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• Self-supervised learning models play an important role

• Yet they are still largely black boxes.



Interpretability and Analysis of models
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Model interpretability has been growing within NLP.

Researchers in other subfields build on findings from interpretability.

There are much fewer interpretability work on speech models.

Mosbach et al. (2024) From Insights to Actions: The Impact of Interpretability and Analysis Research on NLP



Why study speech models for interpretability 
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Signals Symbols Meanings

Speech processing NLP

objective & measurable abstract & thorny 

• Could potentially shed light on how discrete symbols are represented in a 

distributed, continuous space

• Good performance can be achieved with simpler models

• Many findings and theories from speech perception and phonology

• Language is not just about text



Using self-supervised models to explore scientific questions

Self-supervised models have been shown to

• simulate human-like perceptual biases (Millet and Dunbar, 2022)

• predict brain activities of human listeners to some extent

      (Millet et al., 2022; Caucheteux et al., 2023; Tuckute et al., 2023)

These models exhibit non-trivial properties found in humans

What computational constraints are required for these properties to arise?
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Speech contains a lot of information

“eat your raisins outdoors”

male speaker

quiet environment
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annoyed



Speech contains a lot of information ⇔ variability

“eat your raisins outdoors”

speaker environment
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Acoustic features

manipulation in the frequency domainFourier transform

Non-trivial

e.g. log Mel Spectrogram



Challenges in mapping acoustics to text
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• Speaker variability

• Context sensitivity (coarticulation) 

• Processing continuous speech

• Tracking previous phones

• Tracking their order

For example,
cats, task, tax, asked, acts
all consist of /k/, /æ/ , /t/, /s/

Example from William Katz’s lecture notes



Outline
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In the representation space of self-supervised learning models:

1. Speaker information is encoded orthogonally to phonetic information

2. Multiple successive phones are encoded at the same time

3. There is some extent of cross-context generalizability

*2, 3 were also found in the neural encoding of human listeners



Self-supervised learning (SSL) model of speech
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1-D convolution

Embedding

LSTM layers

Contextualised
embeddings



Self-supervised learning (SSL) model of speech
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1-D convolution

LSTM layers

Contextualised
embeddings

Frame-level
Embedding
(1 frame = 10ms)



Self-supervised learning (SSL) model of speech
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1-D convolution

Contextualized
embeddings 
(4-layer LSTM)

Frame-level
embedding



Self-supervised learning (SSL) model of speech
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1-D convolution

Contextualized
embeddings 
(4-layer LSTM)

Frame-level
embedding

predict



Contrastive predictive coding
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CPC

Oord et al. (2018) Representation learning with contrastive predictive coding

• Forward prediction
- more cognitively plausible than masked prediction
• LSTM-based
-    results from transformer-based models are consistent 



Outline
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In the representation space of self-supervised learning models:

1. Speaker information is encoded orthogonally to phonetic information
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Probing for phonetic information
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Probing for phonetic information
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Probing for phonetic information
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Probing for phonetic information
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Probing for phonetic information
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Probing for phonetic information



CPC encodes significant
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phonetic information speaker informationand



Previous work on analyzing SSL speech models

Representations in these models encode

• acoustic events (Wells et al., 2022)

• word-level context (Sanabria et al., 2022)

• speaker identity (van Niekerk et al, 2021)

• gender (de Seyssel et al., 2022)
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What information is encoded

Which layers are different information more salient (Pasad et al., 2021; Pasad et al. 2023)

How are they organized in the representation space?



Our hypothesis
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• Humans maintain acoustic details and can perceive speaker differences but 

can also easily abstract away speaker variability to recognize words.

• Speaker and linguistic information vary independently in producing speech.

• They could be encoded orthogonally
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Evaluate orthogonality 



26

Evaluate orthogonality 
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Evaluate orthogonality 
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Evaluate orthogonality 
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Evaluate orthogonality 
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Evaluate orthogonality 
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Each representation

phoneme label

speaker label

aggregate

39 phoneme centroids

40 speaker centroids

PCA

39 phonetic directions

40 speaker directions

Evaluating orthogonality 

1. Identify the speaker subspace and the phonetic subspace
       Dataset: Librispeech (English audiobooks read by US native speakers)
       We used the dev-clean subset with 40 speakers (8 min per speaker)
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1. Identify the speaker subspace and the phonetic subspace

2. Evaluate whether the two subspaces are orthogonal

• Measure cosine similarity between speaker and phonetic directions.

If orthogonal, they should be low.

• “Collapse” the speaker subspace, i.e. project to its null space;

measure phonetic information in the projected vector.

If orthogonal, phonetic information should be intact.

Evaluating orthogonality 



Cosine similarity between speaker and phonetic directions
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Cosine similarity between speaker and phonetic directions
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“Collapsing” the speaker subspace
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Speaker probing accuracy Phoneme discrimination error rate

Remove speaker information Improve phoneme discrimination



The learnt speaker subspace generalizes to unseen speakers
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Collapsing a learnt speaker subspace on unseen speakers can

• Eliminate speaker information

• Improve phoneme discriminability



Conclusions (part 1)
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Speaker and phonetic information are encoded in orthogonal subspaces 

• This property lends itself to simple disentanglement

• Could be used for speaker normalization

• Are they orthogonal in neural encoding of brains?

• In a follow-up work, we proposed a quantitative measure for orthogonality and 

found that it correlates with phoneme probing accuracy

Mohamed et al. (2024) Orthogonality and isotropy of speaker and phonetic information in self-supervised speech representations
(To appear in Interspeech)



Outline
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In the representation space of self-supervised learning models:

1. Speaker information is encoded orthogonally to phonetic information

2. Multiple successive phones are encoded at the same time



Temporal dynamics of phone encoding
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Phones need to be tracked and integrated to extract words.

The average duration of a phone is about 80ms.

Gwilliams et al. (2022) analyzed MEG recordings from human listeners, and 

found that each phone is decodable for 400ms.

• Coarticulation could cause a phone to be encoded for > 80ms

• A decodable window ≫ 80ms implies multiple phones are maintained 

simultaneously

Gwilliams et al. (2022) "Neural dynamics of phoneme sequences reveal position-invariant code for content and order." Nature communications



How long can we decode the phoneme with representations 
before and after it occurs in the acoustics? 
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Recall standard probing
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Decoding a phone from neighboring frames
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Brain recordings – about 400ms
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The window of phonetic decodability



Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Does the encoding pattern change in this window?
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Dynamic encoding in brain signals

• Brains encode three successive phones 

simultaneously

• The encoding pattern evolves over time

• Encoding temporal information
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Dynamic encoding in brain signals and in model representations



Conclusions (part 2)

Dynamic encoding can be acquired through predictive learning

• Does not rely on top-down information / linguistic knowledge

• Follow-up: would we see the same pattern in the same model 

trained on non-speech audio scenes?
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Outline
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In the representation space of self-supervised learning models:

1. Speaker information is encoded orthogonally to phonetic information

2. Multiple successive phones are encoded at the same time

3. There is some extent of cross-context generalizability



Context-invariant phonemic representations
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Gwilliams et al. (2022) "Neural dynamics of phoneme sequences reveal position-invariant code for content and order." Nature communications

Gwilliams et al. (2022) found that the encoding patterns support some 

degree of cross-position generalization and implied there is context-

invariant phonemic representations.

• Phone position conflates different contexts

• They did not report results on acoustic features
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Does the encoding pattern of a phoneme generalize across contexts?

Train on 
vowels 
following 
/k/
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Does the encoding pattern of a phoneme generalize across contexts?

Test on 
vowels 
following 
/p/
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Does the encoding pattern of a phoneme generalize across contexts?

Test on 
vowels 
following 
/d/
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Time relative to phone onset (s)

Do the encoding patterns generalize across positions?

Partial generalization in brain signals

And in the models, but also some generalization in acoustic features.

Time relative to phone onset (s)

• Cross-context generalization tests showed similar patterns.
• The degree of generalization correlates with acoustic similarity.



Conclusions (part 3)

There is insufficient evidence for context-invariant phonemic encoding in 

either models or brains.

• Top-down information used to identify context-dependent encoding?

• Do we really need context-invariant SSL representations?
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Overall conclusions

• SSL models 

oReadily disentangle speaker and phonetic information

oDevelop temporal dynamics like brains

oAbsence of fully context-invariant phonemic representation

• More broadly

o SSL models can shed light on speech representations in humans

oNeuroscience studies offer novel perspectives for analyzing NNs
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The generalization effect is dependent on acoustic similarity
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Time relative to phone onset 

Decoding
accuracy
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Note

• Gwilliams et al. (2022) only reported cross-position generalization

• We tested both cross-position and cross-context generalization.

• For controllability, we only considered vowel classification

• For phonetic contexts, we only considered the manner of articulation 

of the preceding and following phone

plosive

fricative
nasal

Preceding phone Following phone

plosive

fricative
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Do the encoding patterns generalize across contexts?
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