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Many perceptual processes involve
tracking and integrating

sequentially presented objects
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Speech perception involves
tracking and integrating

sequentially presented phones
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The acoustic realization of a phoneme is 
sensitive to its surrounding context 

due to coarticulation
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How do humans overcome these challenges?
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Gwilliams, L., King, J.-R., Marantz, A., & Poeppel, D. (2022)
Neural dynamics of phoneme sequences reveal position-invariant code for 
content and order

Studies on how neural representations support 
this process:
Mesgarani, Cheung, Johnson, & Chang, 2014; 
Khalighinejad, Cruzatto Da Silva, & Mesgarani, 2017; 
Yi, Leonard, & Chang, 2019; 
Hamilton & Huth, 2020…



Simulating properties found in neural signals
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Gwilliams et al. (2022) 

• analyzed MEG recordings from human listeners

• identified temporal dynamics and context effects

In this work, we simulated their analyses with a computational model to

• explore why or how these properties arise

• Do we observe the same properties in the model?

• examine some open questions regarding the context effects



Findings from Gwilliams et al. (1)
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Phones are encoded in the brain for longer than their actual durations.

average phone duration: 80msAcoustic
signals

Neural
signals

word 
onset

W

IH

K

IY
Phonetic features are 
maintained for up to 300ms

Khalighinejad et al., 2017: 
phoneme categories are 
encoded for up to 350ms



Findings from Gwilliams et al. (1)
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Phones are encoded in the brain for longer than their actual durations.

Acoustic
signals

So the brain encodes multiple 
successive phones simultaneously.

How are they maintained without 
interference?
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Findings from Gwilliams et al. (2)
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onset
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The encoding pattern of a phone evolves over time.

Jointly encoding phonetic 
and temporal information

Acoustic
signals

Neural
signals



Findings from Gwilliams et al. (3)
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The encoding pattern generalizes across phone position.

Train 
phoneme 
classifier generalize

Presence of 
context-invariant 
encoding

p4 p6Phone position p8



The model we used
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Oord et al. (2018) Representation learning with contrastive predictive coding

predict

• Architecture: LSTM (recurrent neural network)

• Learning mechanism: predict upcoming acoustics based on past context in utterance
• Trained on raw speech waveforms (audiobooks) without access to texts



The model we used
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Oord et al. (2018) Representation learning with contrastive predictive coding

• Architecture: LSTM (recurrent neural network)

• Learning mechanism: predict upcoming acoustics
• Trained on raw speech waveforms (audiobooks) without access to text

CPC

Representations: 512-dimensional vectors spaced by 10ms
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Decoding phonemes from representations

CPC

Input: one representation vector

Target: phoneme category

Decoder: linear classifier
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How long is a phone encoded for?

CPC

phone   onset
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How long is a phone encoded for?

CPC

phone   onset

1600ms



Like brains, the model encode each phone for longer than its duration.
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The window of phonetic decodability
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Does the encoding pattern evolve in this window?

P

Time

t1 t2

Training

Testing

Does the encoding pattern identified for t1 generalize to t2?  

Decoding
accuracy (%)

8090

similar encoding pattern
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Does the encoding pattern evolve in this window?
Does the encoding pattern identified for t1 generalize to t2?  

P

Time

Training

Testing

Decoding
accuracy (%)

1090

t1
t3

distinct encoding pattern

t2

80

similar
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If the encoding pattern is evolving

Testing time

Training
time

90   80   60   40   20   10   10   10   10   10

80   90   80   60   40   20   10   10   10   10

60   80   90   80   60   40   20   10   10   10

40   60   80   90   80   60   40   20   10   10

20   40   60   80   90   80   60   40   20   10

10   20   40   60   80   90   80   60   40   20

10   10   20   40   60   80   90   80   60   40

Temporal
generalization

matrix
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If the encoding pattern is evolving

Temporal
generalization

contour

Testing time

Training
time

90   80   60   40   20   10   10   10   10   10

80   90   80   60   40   20   10   10   10   10

60   80   90   80   60   40   20   10   10   10

40   60   80   90   80   60   40   20   10   10

20   40   60   80   90   80   60   40   20   10

10   20   40   60   80   90   80   60   40   20

10   10   20   40   60   80   90   80   60   40

Decodable window

Duration of individual 
encoding pattern
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Duration of decodable window ≈ duration of individual encoding pattern

Testing time

Training
time

If the encoding pattern is stable

Temporal
generalization

contour
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• The encoding pattern of each phone 

evolves over time

• The brain maintains three successive 

phones simultaneously

Dynamic encoding in neural signals
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Dynamic encoding in model representations

The model exhibits similar temporal dynamics as brain signals.

These two properties can arise without top-down information or linguistic knowledge.

(solid: 40%, dotted:20%)
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Context effect

• Gwilliams et al. tested cross-position generalization

• To more directly evaluate context-invariance, we also tested cross-context 

generalization

• Does the generalization effect come from acoustic similarity?

• We compared generalization in the model against generalization with 

acoustic features 
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Time relative to phone onset (s)

Gwilliams et al. found partial generalization in brain signals

Model representations also support incomplete generalization.

There is a small degree of cross-position generalization in acoustic features.

Similar patterns in cross-context generalizations results.

Time relative to phone onset (s)

Cross-position generalization
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Generalization effects could depend on acoustic similarity

• strong positive correlation between the extent of 

generalization effect in model representations and 

in acoustic features

• generalization effects in the model depends on the 

acoustic similarity of the training and test contexts

• It’s possible learning induces more context-

invariance,  but partial generalization alone does 

not support that



• We showed that a predictive learning model can simulate temporal dynamics 

found in neural encoding of human listeners

• These properties can arise without top-down information or prior linguistic knowledge

• Also similar to brains, the model supports partial cross-context generalization

• The generalization effect might be driven by acoustic similarities

• Further studies are required to confirm the presence of context-invariant encoding
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Conclusions

oli.liu@ed.ac.uk
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Cross-context generalization



Posteriorgram baseline
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Time relative to phone 
onset 

Decodi
ng
accurac
y



Contrastive predictive coding
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1-D convolution

Contextualized
embeddings 
(4-layer LSTM)

Frame-level
embedding

predict
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